关于导数的定义与简单应用1
关于导数的定义与简单应用1
Lingerbhw233一般定义
在维基百科中,我们可以得到导数的一般定义。
设函数$y=f(x)$在点$x_0$的某个邻域内有定义,当自变量$x$在$x_0 $处取得增量$\Delta x$(点$x_0+\Delta x$仍在该邻域内)时,相应地函数$y$取得增量$\Delta y=f(x_0+\Delta x)-f(x_0)$如果$\Delta y$与$\Delta x$之比当$\Delta x\to 0$时的极限存在,则称函数$y=f(x)$在点$x_0$处可导,并称这个极限为函数$y=f(x)$在点$x_0$处的导数,记为$f’(x_0)$,即
$$
f’(x)=\lim\limits_{x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$
即
$$
f’(x)=\lim\limits_{x \rightarrow 0} \frac{f(x_0+\Delta x)-f(x)}{\Delta x}
$$
这也是在高中范围内的基本定义。
几何意义
设$P_0$为曲线上的一个定点,$ P$为曲线上的一个动点。当$P$沿曲线逐渐趋向于点$P_0$时,并且割线$P$$P_0$的极限位置$P_0$$T$存在,则称$P_0T$为曲线在$P_0$处的切线
此时切线的斜率为
$tanx=\lim\limits_{x \rightarrow 0} \frac{f(x_0+\Delta x)-f(x)}{\Delta x} $
因此,导数的几何意义为该点处切线的斜率
简单应用
例1: 求函数$f(x)=2x+\frac{8}{x} $的极值
解: 求导得$f’(x)=2-\frac{8}{x^2} $
当$f’(x)$为0时 解得$x=\pm 2$
$\therefore$在$x>2$或$x<-2$时$f’(x)>0$
在$-2<x<2$时$f’(x)<0$
$\therefore f(x)$在$x \in (-\infty,-2)$和$x \in (2,+\infty)$单调递增
$f(x)$在$x \in (-2,2)$单调递减
$\therefore x=-2$时取得极大值-8,$x=2$时取得极小值8